Arsenic Removal by Coagulation & Precipitation Processes

Presentation Prepared by:

Joe Chwirka - Camp Dresser & McKee (chwirkajd@cdm.com)

Bruce Thomson - University of New Mexico (bthomson@unm.edu)

Presented by: YuJung Chang – HDR Engineering, Inc.

Introduction

- Arsenic removal by coagulation & filtration is effective for many applications
- Presentation will discuss:
 - Chemistry of the process
 - Variables affecting process performance (especially pH & coagulant dose)
 - Process variations
 - Coagulation & granular media filtration
 - Coagulation & membrane filtration
 - Design considerations

Acid-Base Chemistry of As(V)

Acid-Base Chemistry of As(III)

Redox Chemistry of As

Solubility of As(III) Compounds

Solubility of As(V) Species

Important Points

- As has two oxidation states As(III) & As(V)
- As(III)
 - Non-ionic (H₃AsO₃) at neutral pH
 - High solubility
 - More toxic to many organisms
- As(V)
 - Ionic (H₂AsO₄⁻/HAsO₄²⁻) at neutral pH
 - Some phases are less soluble
 - More reactive in solution:
 - Membranes
 - IX
 - Adsorption

Coprecipitation

• Coprecipitation involves removal of two or more constituents by a precipitation reaction. Coprecipitation of As with Fe(OH)₃ is an effective treatment process:

$$FeCl_3 + 3H_2O = Fe(OH)_{3(s)} + 3H^+ + 3Cl^-$$

Points:

- Produces HCl which will lower pH
- Typical Fe dose $\sim 10^{-4}$ M, whereas As conc. $\sim 10^{-7}$ M, hence As is minor component within precipitate
- As likely removed by adsorption onto Fe(OH)₃ surface with subsequent enmeshment as floc particle grows
- Al(OH)₃ also effective

Solubility of Fe(OH)₃

Effect of pH on Surface Charge of Fe(OH)₃

Covalent Bond Formation

(Grossl et al., 1997)

pH of Zero Point of Charge

- Electrostatic attraction is important first step in adsorption
- $pH_{zpc} = pH$ at which net surface charge = 0
 - Surface is positive at pH < pH_{zpc}
- Most clay minerals have $pH_{zpc} < 6$
 - Hence poor adsorption
 - Clays dominate surface chemistry of soils
- Fe(OH)₃ and Al₂O₃ have relatively high pH_{zpc}
 - Good adsorbents of As(V)

As Removal by Conventional Treatment

(McNeill & Edwards 1997)

- Survey of conventional coagulation-flocculation water treatment plants
- Correlate As removal to removal of Fe, Mn, & Al

As FractionRemoved=
$$\frac{K[Fe]}{1+K[Fe]}$$

• [Fe] = Iron Precip. Formed (mM)

As Removal by Conventional Trt. - 2

As Removal by Conventional Trt. - 3

- Strong correlation to removal of Fe & use of FeCl₃ as coagulant
- Weaker correlation to removal of Al & use of Alum
 - Possible sorption onto colloidal Al(OH)₃ which passes through granular media filters
 - Improved As removal achieved by minimizing effluent total Al concentration
- Note the importance of particulate As

Arsenic Removal vs FeCl₃ Dose, Albuquerque NM

Ambient pH: FeCl₃ vs As Leakage, NAS Fallon

Coagulation-Filtration - Chwirka & Thomson

El Paso Jar Testing

pH Adjustment with CO2, NAS Fallon, NV

Silica Impacts Arsenic Removal at pH 7.0 and Above

FeCl3 Dose: 4 mg/L

Silica Speciation with pH

Silica in US Water Supplies (NAOS)

After Davis and Edwards

Polymeric Silica

Coagulation/Filtration

- Use pressure filters
- Direct Filtration frequently used for iron and manganese removal.
- Limited to low ferric dose applications.
- High coagulant dose will result in frequent backwash requirements
 - Increased residuals production & handling costs
 - Increased production of wastewater

Schematic of Coagulation/Filtration

Calculation of Filter Loading Limitation

- Rule of Thumb, no more than 10 mg/L of FeC13
- Limit Solids Loading to 0.1 lbs/SF
- May need to add sedimentation

Vertical Pressure Filter

Direct Filtration Performance (Based on 0.1 lbs Solids/sf)

Backwash Water as Percent of Production (Based on 250 gal/sf)

C/F O&M Issues

- Large backwash volume (20 gpm/sf for 10 minutes)
- Tanks may need internal painting, 10 yr intervals. Use 316 SST.
- Standby filters, typically provided, but need to evaluate.
- Pneumatic or electric valve operators.

Coagulation/ Pressure Filtration

- Particle size
- Particle breakthrough
- backwash requirements
- filter ripening
- Backup Filters

Coagulation/ Microfiltration

- Pilot tested in Albuquerque, 1998
- Pilot tested in NAS Fallon, NV, 2001
- Pilot tested in El Paso, TX, 2001/2002
- Fallon Paiute Shoshone Tribe: 0.5 mgd
- City of Albuquerque: 2.3 mgd

Microfiltration General Concepts

- Low Operating Pressure, 5 30 psi
- 0.1 to 0.2 micron pore size
- Water flow from Outside to the Inside
- Air-Water Backwash
- Backwash Every 25 to 30 minutes (95% recovery)
- Flux rate defined as Gallons/SF/Day (GFD)
- Chemical Cleaning Frequency > 30 days

What is C/MF?

Pressure Driven Membranes

MF Process Operates in Direct Filtration Mode

Solids are Removed from Module by an Air-Water Backwash

Coagulation/ Microfiltration

- Pilot tested in Albuquerque, 1998
- Pilot tested in NAS Fallon, NV, 2001
- Pilot tested in El Paso, TX, 2001/2002
- Fallon Paiute Shoshone Tribe: 0.5 mgd
- City of Albuquerque: 2.3 mgd

Microfiltration General Concepts

- Low Operating Pressure, 5 30 psi
- 0.1 to 0.2 micron pore size
- Water flow from Outside to the Inside
- Air-Water Backwash
- Backwash Every 25 to 30 minutes (95% recovery)
- Flux rate defined as Gallons/SF/Day (GFD)
- Chemical Cleaning Frequency > 30 days

What is C/MF?

Pressure Driven Membranes

MF Process Operates in Direct Filtration Mode

Solids are Removed from Module by an Air-Water Backwash

Pall Microfilter

45

Memcor Performance NAS Fallon, 15 mg/L FeCl3

Coagulation-Filtration - Chwirka & Thomson

Memcor Cleaning Efficiency NAS Fallon, Citric Acid

Pall Performance NAS Fallon, FeCl3 45 mg/L

El Paso Pilot Studies

- Only Pall MF tested
- Ferric dose 10 mg/L
- pH lowered to 6.8 with CO2

El Paso Pall Performance

Fallon Paiute Shoshone Tribe C/MF PFD

Fallon Paiute Shoshone Tribe C/MF

Fallon Paiute Shoshone Tribe As Treatment Facility

Fallon Paiute Shoshone Tribe Start-up December 2004

C/MF Summary

- Emerging Technology for Arsenic Treatment
- Can be designed for high flux rates with Low TOC groundwater
- Optimize solids loading by pH pre-treatment
- Cost competitive with other technologies

Recent Studies on Particle Size Filtration and Arsenic Removal

C/MF O&M Issues

- Membrane Replacement: Pall warrantees membranes for 10 years, prorated.
- Chemical cleaning with citric acid, can not be recycled, must be disposed of.
- Provide sufficient replacement parts, not system redundancy.

Comparison of C/MF to Pressure Filters at the Fallon Paiute Shoshone Tribe

Capital Cost Summary	Pressure Filters	C/MF
Total Estimated C/MF Facility Cost	\$1,252,998	\$987,898
Summary of Annual O&M Costs		
Total Estimateded O&M for Treatment, \$/yr	\$71,436	\$82,392
Unit O&M Costs for C/MF	\$0.77	\$0.89
Present Worth Analysis		
Total Present Value of Facitlities	\$2,087,000	\$1,948,000
Annual Amortized Cost of Capital & O&M	\$125,220	\$116,880
Total Unit Cost of Water Produced, \$/1,000 gals	1.38	1.29

Residuals Characteristics for C/MF and C/F

- C/MF around 4% to 5 % Backwash.
- C/F around 5% to 10% Backwash.
- Recycle the backwash water to minimize wastewater.
- Ferric residuals will pass TCLP, however, may not pass the Cal WET.

Residuals Handling

- Mechanical dewatering will be complicated: Ferric sludge is difficult to dewater
- Need body additives, Diatomaceous Earth
- Filter Bottom Dumpsters and polymer for small applications.
- Solids drying ponds:
 - Ponds need to be lined.
 - Anaerobic conditions may release the As.
 - Provide access for sludge removal equipment.

Concurrent Iron, Manganese, and Arsenic Drinking Water Standards

- Fe: Secondary Standard of 0.30 mg/L
- Mn: Secondary Standard of 0.05 mg/L

Iron and Arsenic Removal

- Oxidize Fe with Cl₂ or O₃
- Adsorb As onto Fe(OH)₃ precipitate
- pH needs to be around 7.3

Manganese and Arsenic Removal

- As requires low pH for adsorption
- Mn requires high pH (>10) for oxidation with Cl₂
- Mn oxidation by ClO₂ is rapid & appears to be independent of pH
 - ClO₂ reported to be ineffective for As(III) oxidation.
 - May need to add Cl₂ in addition